Abstract
Recent research in the fields of biochemistry and molecular biology has shown that different light qualities have extremely different effects on plant development, and optimizing light quality conditions can speed up plant growth. Clock-regulated red-light signaling, can enhance hypocotyl elongation, and increase seedling height and flower and fruit productivity. In order to investigate the effect of red light on circadian clocks in plants, a novel computational model was established. The expression profiles of the circadian element CCA1 from previous related studies were used to fit the model. The simulation results were validated by the expression patterns of CCA1 in Arabidopsis, including wild types and mutants, and by the phase shifts of CCA1 after red-light pulse. The model was used to further explore the complex responses to various photoperiods, such as the natural white-light/dark cycles, red/white/dark cycles, and extreme 24 h photoperiods. These results demonstrated that red light can reset the expression pattern, period, and phase of the circadian clock. Finally, we identified the dependence of phase shifts on the length of red-light pulse and the minimum red-light pulse length required for producing an observable phase shift. This work provides a promising computational approach to investigating the response of the circadian clock to other light qualities.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province, China
Undergraduate Innovation and Entrepreneurship of China
Key Projects of the National Key Research and Development Plan
State Key Program of the Natural Science Foundation of China
China Agriculture Research System
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献