Comparative Analysis of Complete Mitochondrial Genome of Ariosoma meeki (Jordan and Snider, 1900), Revealing Gene Rearrangement and the Phylogenetic Relationships of Anguilliformes

Author:

Huang Youkun1ORCID,Zhu Kehua2,Yang Yawei1,Fang Liancheng1ORCID,Liu Zhaowen13,Ye Jia1,Jia Caiyi1,Chen Jianbin3,Jiang Hui4

Affiliation:

1. Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China

2. State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China

3. School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, China

4. College of Life Sciences, Hainan Normal University, Haikou 571158, China

Abstract

The mitochondrial genome structure of a teleostean group is generally considered to be conservative. However, two types of gene arrangements have been identified in the mitogenomes of Anguilliformes. In this study, we report the complete mitochondrial genome of Ariosoma meeki (Anguilliformes (Congridae)). For this research, first, the mitochondrial genome structure and composition were analyzed. As opposed to the typical gene arrangement pattern in other Anguilliformes species, the mitogenome of A. meeki has undergone gene rearrangement. The ND6 and the conjoint tRNA-Glu genes were translocated to the location between the tRNA-Thr and tRNA-Pro genes, and a duplicated D-loop region was translocated to move upstream of the ND6 gene. Second, comparative genomic analysis was carried out between the mitogenomes of A. meeki and Ariosoma shiroanago. The gene arrangement between them was found to be highly consistent, against the published A. meeki mitogenomes. Third, we reproduced the possible evolutionary process of gene rearrangement in Ariosoma mitogenomes and attributed such an occurrence to tandem repeat and random loss events. Fourth, a phylogenetic analysis of Anguilliformes was conducted, and the clustering results supported the non-monophyly hypothesis regarding the Congridae. This study is expected to provide a new perspective on the A. meeki mitogenome and lay the foundation for the further exploration of gene rearrangement mechanisms.

Funder

Project of Materials and Chemical Engineering First-class Undergraduate Talent Demonstration and Leading Base

Natural Science Foundation of the Higher Education Institutions of Anhui Province

Key Discipline of Materials Science and Engineering, Chizhou University

School-level key projects of Chizhou College

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3