Analyzing Predominant Bacterial Species and Potential Short-Chain Fatty Acid-Associated Metabolic Routes in Human Gut Microbiome Using Integrative Metagenomics

Author:

Kingkaw Amornthep,Raethong NachonORCID,Patumcharoenpol Preecha,Suratannon Narissara,Nakphaichit MassalinORCID,Keawsompong SuttipunORCID,Roytrakul SittirukORCID,Vongsangnak Wanwipa

Abstract

Gut microbiome plays an essential role in host health, and there is interest in utilizing diet to modulate the composition and function of microbial communities. Copra meal hydrolysate (CMH) is commonly used as a natural additive to enhance health. However, the gut microbiome is largely unknown at species level and is associated with metabolic routes involving short-chain fatty acids (SCFAs). In this study, we aimed to analyze, using integrative metagenomics, the predominant species and metabolic routes involved in SCFAs production in the human gut microbiome after treatment with CMH. The effect of CMH treatment on the Thai gut microbiome was demonstrated using 16S rRNA genes with whole-metagenome shotgun (WMGS) sequencing technology. Accordingly, these results revealed that CMH has potentially beneficial effects on the gut microbiome. Twelve predominant bacterial species, as well as their potential metabolic routes, were involved in cooperative microbiome networks under sugar utilization (e.g., glucose, mannose, or xylose) and energy supply (e.g., NADH and ATP) in relation to SCFAs biosynthesis. These findings suggest that CMH may be used as a potential prebiotic diet for modulating and maintaining the gut microbiome. To our knowledge, this is the first study to reveal the predominant bacterial species and metabolic routes in the Thai gut microbiome after treatment with potential prebiotics.

Funder

National Research Council of Thailand

Kasetsart University and the National Science and Technology Development Agency

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3