The Impact of Urbanization on Tree Growth and Xylem Anatomical Characteristics

Author:

Gao Xiaohui1,Zhao Binqing2,Chen Zecheng2,Song Wenqi2,Li Zongshan3,Wang Xiaochun12ORCID

Affiliation:

1. Aulin College, Northeast Forestry University, Harbin 150040, China

2. Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China

3. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

Abstract

In the context of the intensification of global urbanization, how urbanization (urban heat island effect and air pollution) affects urban tree growth is not fully understood. In this paper, the radial growth and xylem anatomical characteristics of three different tree species (Quercus mongolica, Fraxinus mandshurica, and Pinus sylvestris var. mongolica) in urban and rural areas of Harbin were compared by means of tree-ring anatomy. The results showed that there were significant differences in the growth of both broadleaf trees and conifers between urban and rural areas. The vessel number, cumulative area of vessels, and theoretical hydraulic conductivity of all tree species in rural areas were higher than those in urban areas, indicating that urbanization may have the effect of slowing down growth. However, broadleaf trees in urban areas had higher vessel density and a greater percentage of a conductive area within xylem and theoretical xylem-specific hydraulic conductivity. The thickness of cell walls and cell wall reinforcement index of P. sylvestris var. mongolica were strongly reduced by air pollution, implying that it may be more sensitive to urbanization. Compared to Q. mongolica, F. mandshurica showed less sensitivity to urbanization. Warming and drying climate in Harbin may be an important factor affecting tree growth.

Funder

National Natural Science Foundation of China

Fund of Eco-meteorological Innovation Open Laboratory in Northeast China, China Meteorological Bureau

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3