ProBDNF Upregulation in Murine Hind Limb Ischemia Reperfusion Injury: A Driver of Inflammation

Author:

Aby Katherine1,Antony Ryan1,Li Yifan1

Affiliation:

1. Department of Basic Biomedical Science, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA

Abstract

Brain-derived neurotropic factor (BDNF) has been shown to be expressed in many nonneuronal tissues including skeletal muscle. Skeletal muscle BDNF has been studied regarding its function in metabolism and exercise; however, less is known about its role in skeletal muscle injury. The precursor to BDNF, proBDNF, has an unknown role in skeletal muscle. The levels of proBDNF, mature BDNF, and their receptors were compared in the skeletal muscle and brain tissues of C57BL/6J mice. Tourniquet-induced hind limb ischemia-reperfusion injury was used to assess the function of skeletal muscle-derived proBDNF in skeletal muscle injury. Skeletal muscle-specific knockout of BDNF and pharmacological inhibition of p75NTR, the proBDNF receptor, were used to determine the role of proBDNF–p75NTR signaling. We show for the first time that proBDNF is the predominantly expressed form of BDNF in skeletal muscle and that proBDNF is significantly upregulated in skeletal muscle following hind limb ischemia-reperfusion injury. Skeletal muscle-specific knockout of BDNF blunted the inflammatory response in the injured tissue and appears to be mediated by the proBDNF–p75NTR pathway, as shown by the pharmacological inhibition of p75NTR. These findings suggest that skeletal muscle proBDNF plays a critical role in driving the inflammatory response following skeletal muscle injury.

Funder

National Institutes of Health

University of South Dakota GRISE NIH training

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3