Association of Macrolide Resistance Genotypes and Synergistic Antibiotic Combinations for Combating Macrolide-Resistant MRSA Recovered from Hospitalized Patients

Author:

Bishr Amr S.,Abdelaziz Salma M.ORCID,Yahia Ibrahim S.ORCID,Yassien Mahmoud A.,Hassouna Nadia A.,Aboshanab Khaled M.ORCID

Abstract

Macrolide-resistant methicillin-resistant Staphylococcus aureus (MAC-MRSA) is one of the most clinically relevant pathogens due to its significant ability of resistance acquisition to different antimicrobial agents. This study aimed to evaluate antimicrobial susceptibility and the use of different combinations of azithromycin with other antibiotics for combating MAC resistance. Seventy-two Staphylococci (38.5%) (n = 187), showed resistance to MACs; of these, 53 isolates (73.6%, n = 72) were S. aureus and 19 (26.4%, n = 72) were coagulase-negative staphylococci (CoNS). Out of the 53 S. aureus and 19 CoNS isolates, 38 (71.7%, n = 53) and 9 (47.4%, n = 19) were MRSA and methicillin-resistant CoNS, respectively. The constitutive MACs, lincosamides and streptogramin-B (cMLS) comprised the predominant phenotype among S. aureus isolates (54.7%) and CoNS isolates (78.9%). The PCR analysis showed that the ermC gene was the most prevalent (79.2%), followed by msrA (48.6%), and ermA (31.9%). Azithromycin combinations with either linezolid, ceftriaxone, gentamicin, or cefotaxime provided synergy in 42.1%, 44.7%, 31.6% and 7.9% of the 38 MAC-MRSA isolates, respectively. Statistical analysis showed significant association between certain MAC resistance genotypes and the synergistic effect of certain azithromycin combinations (p value < 0.05). In conclusion, azithromycin combinations with either linezolid, or ceftriaxone showed synergism in most of the MAC-resistant MRSA clinical isolates.

Funder

Research Center for the Advanced Materials Science (RCAMS) at King Khalid University

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3