Abstract
Early blight is a disease of potato that is caused by Alternaria species, notably A. solani. The disease is usually controlled with fungicides. However, A. solani is developing resistance against fungicides, and potato cultivars with genetic resistance to early blight are currently not available. Here, we identify two wild potato species, which are both crossable with cultivated potato (Solanum tuberosum), that show promising resistance against early blight disease. The cross between resistant S. berthaultii and a susceptible diploid S. tuberosum gave rise to a population in which resistance was inherited quantitatively. S. commersonii subsp. malmeanum was also crossed with diploid S. tuberosum, despite a differing endosperm balance number. This cross resulted in triploid progeny in which resistance was inherited dominantly. This is somewhat surprising, as resistance against necrotrophic plant pathogens is usually a quantitative trait or inherited recessively according to the inverse-gene-for-gene model. Hybrids with high levels of resistance to early blight are present among progeny from S. berthaultii as well as S. commersonii subsp. malmeanum, which is an important step towards the development of a cultivar with natural resistance to early blight.
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献