The Gill-Associated Bacterial Community Is More Affected by Exogenous Chlorella pyrenoidosa Addition than the Bacterial Communities of Water and Fish Gut in GIFT Tilapia (Oreochromis niloticus) Aquaculture System

Author:

Meng Shunlong12ORCID,Xu Huimin1,Qin Lu2,Chen Xi1,Qiu Liping1,Li Dandan1,Song Chao12,Fan Limin12,Hu Gengdong1,Xu Pao12

Affiliation:

1. Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China

2. Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China

Abstract

Microalgae has been widely used in aquaculture to improve both the water environment and fish growth; however, the current understanding of the effects of microalgae addition on the key players involved in regulating the water environment and fish health, such as microorganisms, remains limited. Here, a 50-day mesocosm experiment was set up to simulate the culture of Genetic Improvement of Farmed Tilapia (GIFT, Oreochromis niloticus) with an average weight of 14.18 ± 0.93 g and an average length of 82.77 ± 2.80 mm. Different amounts of Chlorella pyrenoidosa were added into these artificial systems to investigate dynamics of bacterial communities in aquaculture water, fish gill, and gut using amplicon-based high-throughput sequencing technology. Our results showed that Chlorella pyrenoidosa addition increased diversity and network complexity of gill-associated bacterial communities rather than those of the water and gut. Furthermore, more biomarkers in the gill-associated bacterial communities were detected in response to Chlorella pyrenoidosa addition than the water and fish gut samples. These findings highlighted the high sensitivity of gill-associated bacterial communities in response to the Chlorella pyrenoidosa addition, implying Chlorella pyrenoidosa addition could play important roles in regulating the fish mucosal immunity by altering the gill-associated microbiota.

Funder

the earmarked fund for CARS

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3