Monitoring Snake Venom-Induced Extracellular Matrix Degradation and Identifying Proteolytically Active Venom Toxins Using Fluorescently Labeled Substrates

Author:

Bittenbinder Mátyás A.123,Bergkamp Nick D.4ORCID,Slagboom Julien23ORCID,Bebelman Jan Paul M.4,Casewell Nicholas R.5ORCID,Siderius Marco H.4,Smit Martine J.4ORCID,Kool Jeroen23ORCID,Vonk Freek J.123

Affiliation:

1. Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands

2. Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands

3. Centre for Analytical Sciences Amsterdam (CASA), 1081 HZ Amsterdam, The Netherlands

4. Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands

5. Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK

Abstract

Snakebite envenoming is an important public health issue with devastating consequences and annual mortality rates that range between 81,000 and 138,000. Snake venoms may cause a range of pathophysiological effects affecting the nervous system and the cardiovascular system. Moreover, snake venom may have tissue-damaging activities that result in lifelong morbidities such as amputations, muscle degeneration, and organ malfunctioning. The tissue-damaging components in snake venoms comprise multiple toxin classes with various molecular targets including cellular membranes and the extracellular matrix (ECM). In this study, we present multiple assay formats that enable investigation of snake venom-induced ECM degradation using a variety of (dye-quenched) fluorescently labeled ECM components. Using a combinatorial approach, we were able to characterise different proteolytic profiles for different medically relevant snake venoms, followed by identification of the responsible components within the snake venoms. This workflow could provide valuable insights into the key mechanisms by which proteolytic venom components exert their effects and could therefore prove useful for the development of effective snakebite treatments against this severe pathology.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3