The Composition and Function of the Rhizosphere Bacterial Community of Paeonia lactiflora Varies with the Cultivar

Author:

Yang Liping1,Wan Xin23,Zhou Runyang1,Yuan Yingdan1

Affiliation:

1. College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China

2. Jiangsu Academy of Forestry, Nanjing 211153, China

3. Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou 225006, China

Abstract

The composition and diversity of the rhizosphere microbial community maintain the stability of the root microclimate, and several studies have focused on this aspect of rhizosphere microorganisms. However, how these communities vary with cultivars of a species is not completely understood. Paeonia lactiflora—a perennial herb species of the family Paeoniaceae—includes a wide variety of cultivars, with rich rhizosphere microbial resources. Hence, we studied the differences in rhizosphere bacterial communities associated with eight P. lactiflora cultivars. We noted that Actinobacteria, Proteobacteria, Acidobacteria, Bacteroidetes, Firmicutes, Verrucomicrobia, Planctomycetes and Chloroflexi were the dominant phyla associated with the cultivars. The composition of rhizosphere bacterial community of different cultivars was highly similar at taxonomic levels, but there were slightly differences in the relative abundance. LEfSe analysis showed that the cultivars “Sheng Tao Hua” and “Zi Lou Xian Jin” exhibited the most biomarkers. Differential ASV analysis revealed the maximum difference in ASV abundance between “Lian Tai” and “Zi Hong Zheng Hui”, as well as between “Sheng Tao Hua” and “Tao Hua Fei Xue”, and the maximum similarity between “Duo Ye Zi” and “Xue Feng”. Co-occurrence network analysis revealed that rhizosphere bacteria in most cultivars maintain homeostasis by cooperation, wherein Actinobacteria and Proteobacteria played a vital role. In addition, microbial resources related to cultivars like bioremediation, organic degradation and resistance to diseases are found. This study revealed the structures of the rhizosphere bacterial communities associated with different cultivars of P. lactiflora and explored their stress resistance potential, which can be used to guide future agricultural practices.

Funder

National Natural Science Foundation of China

Forestry Science and Technology Innovation and Promotion Project of Jiangsu Province

Construction Model of Efficient Farmland Protection Forest Network in Jiangsu Province

Efficiency Management Technology of Carbon Sequestration Forest in Jiangsu coast

Natural Science Foundation of Jiangsu Province, China

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3