Abstract
Background: Pulmonary hypertension (PH) is a vasoconstrictive disease characterized by elevated mean pulmonary arterial pressure (mPAP) at rest. Idiopathic pulmonary arterial hypertension (iPAH) and chronic thromboembolic pulmonary hypertension (CTEPH) represent two distinct subtypes of PH. Persisting PH leads to right ventricular (RV) hypertrophy, heart failure, and death. RV performance predicts survival and surgical interventions re-establishing physiological mPAP reverse cardiac remodeling. Nonetheless, a considerable number of PH patients are deemed inoperable. The underlying mechanism(s) governing cardiac regeneration, however, remain largely elusive. Methods: In a longitudinal approach, we profiled the transcriptional landscapes of hypertrophic RVs and recovered hearts 3 months after surgery of iPAH and CTEPH patients. Results: Genes associated with cellular responses to inflammatory stimuli and metal ions were downregulated, and cardiac muscle tissue development was induced in iPAH after recovery. In CTEPH patients, genes related to muscle cell development were decreased, and genes governing cardiac conduction were upregulated in RVs following regeneration. Intriguingly, early growth response 1 (EGR1), a profibrotic regulator, was identified as a major transcription factor of hypertrophic RVs in iPAH and CTEPH. A histological assessment confirmed our biocomputational results, and suggested a pivotal role for EGR1 in RV vasculopathy. Conclusion: Our findings improved our understanding of the molecular events driving reverse cardiac remodeling following surgery. EGR1 might represent a promising candidate for targeted therapy of PH patients not eligible for surgical treatment.
Funder
Austrian Research Promotion Agency
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献