Movements of a Specialist Butterfly in Relation to Mowing Management of Its Habitat Patches

Author:

Popović Miloš12ORCID,Nowicki Piotr2ORCID

Affiliation:

1. Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia

2. Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland

Abstract

Over the centuries, mowing and grazing have been crucial for sustaining populations of grassland insects and their overall diversity in Europe. While long-term positive effects of mowing have been studied in more detail, little is known about the direct impacts of mowing on adult butterflies. Here, we explore how different habitat management (mown, recovered after mowing and unmown) affects movements and population estimates of the endangered specialist butterfly Phengaris teleius. The results showed higher dispersal probability from mown (22%) and recovered meadows (16%) than from the unmown ones (9%). However, mowing shortened the average dispersal distances (mown = 102 m, recovered = 198 m, unmown = 246 m) and reduced butterfly population size. In contrast, a larger area of the habitat patches promoted long-distance dispersal and sustained larger populations. We hypothesise that mowing caused depletion of resources and triggered dispersal of poorly adapted individuals. This behaviour is maladaptive and could lead to higher dispersal-related mortality; thus, mowing should be avoided before and during the butterfly flight period. This study suggests that the species’ persistence in a fragmented landscape depends on large, unmown and interconnected habitats that support more viable populations, promote long-distance dispersal, and enable (re)colonisation of vacant patches.

Funder

Polish National Science Centre

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3