The Influence of Environmental Factors on Site Selection Augment Breeding Success in Honey Bees: An Insight of Honey Bee Genetic Resource Conservation

Author:

Akongte Peter Njukang12,Park Bo-Sun1,Son Minwoong1,Lee Chang-hoon1,Oh Daegeun1,Choi Yong-Soo1ORCID,Kim Dongwon1

Affiliation:

1. Department of Agricultural Biology, National Institute of Agricultural Science, Wanju 55365, Republic of Korea

2. Institute of Agricultural Research for Development (IRAD), Buea PMB 25, Cameroon

Abstract

Honey bee reproductive behavior involves a complicated mating system that embodies a number of factors, including environmental and human-induced factors. Controlled breeding in isolated mating stations is a prerequisite to maintain the genetic resources of honey bees through natural mating. The concept of controlled mating is a challenge in most beekeeping operations due to its low mating success rate. Therefore, a detailed investigation into the suitability of isolated mating stations is of interest. Thus, we bred two subspecies of honey bees (Apis cerana koreana and Apis mellifera L.) in isolated mating stations (island) from 2021 to 2023 and in an open breeding station in 2023. Our results demonstrate that the highest percentage of the mating success rate in isolated mating stations was recorded in the Wido Island, which had the highest percentage of bare land, coniferous forests, deciduous forests, fields, and mixed forests. The mating success rate was higher in the summer and spring for A. cerana and A. mellifera, respectively. The mating success rate was higher in open mating compared to controlled mating (Island) and did not vary between pure-breeding and cross-breeding lines. Our findings suggested that mating stations with mixed forest and fields are potential sites for the successful breeding of honey bees.

Funder

National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3