Activation of Cryptochrome 4 from Atlantic Herring

Author:

Frederiksen Anders1ORCID,Aldag Mandus1ORCID,Solov’yov Ilia A.123ORCID,Gerhards Luca1ORCID

Affiliation:

1. Institute of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, 26129 Oldenburg, Germany

2. Research Centre for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, 26129 Oldenburg, Germany

3. Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky University of Oldenburg, Ammerländer Heerstr. 114-118, 26129 Oldenburg, Germany

Abstract

Marine fish migrate long distances up to hundreds or even thousands of kilometers for various reasons that include seasonal dependencies, feeding, or reproduction. The ability to perceive the geomagnetic field, called magnetoreception, is one of the many mechanisms allowing some fish to navigate reliably in the aquatic realm. While it is believed that the photoreceptor protein cryptochrome 4 (Cry4) is the key component for the radical pair-based magnetoreception mechanism in night migratory songbirds, the Cry4 mechanism in fish is still largely unexplored. The present study aims to investigate properties of the fish Cry4 protein in order to understand the potential involvement in a radical pair-based magnetoreception. Specifically, a computationally reconstructed atomistic model of Cry4 from the Atlantic herring (Clupea harengus) was studied employing classical molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) methods to investigate internal electron transfers and the radical pair formation. The QM/MM simulations reveal that electron transfers occur similarly to those found experimentally and computationally in Cry4 from European robin (Erithacus rubecula). It is therefore plausible that the investigated Atlantic herring Cry4 has the physical and chemical properties to form radical pairs that in turn could provide fish with a radical pair-based magnetic field compass sensor.

Funder

Volkswagen Foundation

Deutsche Forschungsgemeinschaft

Ministry for Science and Culture of Lower Saxony Simulations Meet Experiments on the Nanoscale

Resource Allocation Board

CARL Cluster at the Carl-von-Ossietzky University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3