Roles of Toll-like Receptor Signaling in Inflammatory Bone Resorption

Author:

Tominari Tsukasa1ORCID,Matsumoto Chiho1,Tanaka Yuki2,Shimizu Kensuke1ORCID,Takatoya Masaru2,Sugasaki Moe2,Karouji Kento2,Kasuga Urara1,Miyaura Chisato1,Miyata Shinji3ORCID,Itoh Yoshifumi34ORCID,Hirata Michiko1,Inada Masaki123

Affiliation:

1. Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan

2. Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan

3. Inada Research Unit, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan

4. Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK

Abstract

Toll-like receptors (TLRs) are pattern recognition receptors expressed in immune cells, including neutrophils, macrophages, and dendritic cells. Microbe-associated molecular patterns, including bacterial components, membranes, nucleic acids, and flagella are recognized by TLRs in inflammatory immune responses. Periodontal disease is an inflammatory disease known to cause local infections associated with gingival inflammation, subsequently leading to alveolar bone resorption. Prostaglandin E2 (PGE2) is a key mediator of TLR-induced inflammatory bone resorption. We previously reported that membrane-bound PGE synthase (mPGES-1)-deficient mice failed to induce bone resorption by lipopolysaccharide (LPS), a major pathogenic factor involved in periodontal bone resorption. Further experiments exploring specific pathogen-promoting osteoclast differentiation revealed that various TLR ligands induced osteoclast differentiation in a co-culture model. The ligands for TLR2/1, TLR2/6, TLR3, and TLR5, as well as TLR4, induce osteoclast differentiation associated with the production of PGE2 and the receptor activator of nuclear factor-kappa B ligand (RANKL), an inevitable inducer of osteoclast differentiation in osteoblasts. In vivo, local injection of TLR ligands, including TLR2/1, TLR2/6, and TLR3, resulted in severe alveolar bone resorption. This review summarizes the latest findings on TLR-mediated osteoclast differentiation and bone resorption in inflammatory diseases, such as periodontal diseases.

Funder

Japan Society for the Promotion of Science (JSPS) KAKENHI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3