Diagnosis of Acute Aortic Syndromes on Non-Contrast CT Images with Radiomics-Based Machine Learning

Author:

Ma Zhuangxuan1ORCID,Jin Liang12ORCID,Zhang Lukai1,Yang Yuling1,Tang Yilin1,Gao Pan1,Sun Yingli1,Li Ming13

Affiliation:

1. Radiology Department, Huadong Hospital, Affiliated with Fudan University, Shanghai 200040, China

2. Radiology Department, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China

3. Institute of Functional and Molecular Medical Imaging, Shanghai 200040, China

Abstract

We aimed to detect acute aortic syndromes (AAS) on non-contrast computed tomography (NCCT) images using a radiomics-based machine learning model. A total of 325 patients who underwent aortic CT angiography (CTA) were enrolled retrospectively from 2 medical centers in China to form the internal cohort (230 patients, 60 patients with AAS) and the external testing cohort (95 patients with AAS). The internal cohort was divided into the training cohort (n = 135), validation cohort (n = 49), and internal testing cohort (n = 46). The aortic mask was manually delineated on NCCT by a radiologist. Least Absolute Shrinkage and Selection Operator regression (LASSO) was used to filter out nine feature parameters; the Support Vector Machine (SVM) model showed the best performance. In the training and validation cohorts, the SVM model had an area under the curve (AUC) of 0.993 (95% CI, 0.965–1); accuracy (ACC), 0.946 (95% CI, 0.877–1); sensitivity, 0.9 (95% CI, 0.696–1); and specificity, 0.964 (95% CI, 0.903–1). In the internal testing cohort, the SVM model had an AUC of 0.997 (95% CI, 0.992–1); ACC, 0.957 (95% CI, 0.945–0.988); sensitivity, 0.889 (95% CI, 0.888–0.889); and specificity, 0.973 (95% CI, 0.959–1). In the external testing cohort, the ACC was 0.991 (95% CI, 0.937–1). This model can detect AAS on NCCT, reducing misdiagnosis and improving examinations and prognosis.

Funder

Shanghai Key Lab of Forensic Medicine, Ministry of Justice

Youth Medical Talents-Medical Imaging Practitioner Program

Science and Technology Planning Project of Shanghai Science and Technology Commission

Health Commission of Shanghai

National Natural Science Foundation of China

Shanghai “Rising Stars of Medical Talent” Youth Development Program “Outstanding Youth Medical Talents”

Emerging Talent Program

Leading Talent Program

Excellent Academic Leaders of Shanghai

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3