Nucleolar Protein 56 Deficiency in Zebrafish Leads to Developmental Abnormalities and Anemia via p53 and JAK2-STAT3 Signaling

Author:

Liang Fang1ORCID,Lu Xiaochan2,Wu Biyu1,Yang Yexin1,Qin Wei3

Affiliation:

1. Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China

2. Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen 518036, China

3. Guangdong Key Laboratory of Mental Health and Cognitive Science, Key Laboratory of Brain, Cognition and Education Science, Ministry of Education of China, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China

Abstract

Ribosomes are the vital molecular machine for protein translation in a cell. Defects in several nucleolar proteins have been observed in human ribosomopathies. In zebrafish, a deficiency in these ribosomal proteins often results in an anemic phenotype. It remains to be determined whether any other ribosome proteins are involved in regulating erythropoiesis. Here, we generated a nucleolar protein 56 (nop56)−/− zebrafish model and investigated its function. A nop56 deficiency induced severe morphological abnormalities and anemia. WISH analysis showed that the specification of the erythroid lineage in definitive hematopoiesis and the maturation of erythroid cells were impaired in the nop56 mutants. Additionally, transcriptome analysis revealed that the p53 signaling pathway was abnormally activated, and the injection of a p53 morpholino partially rescued the malformation, but not the anemia. Moreover, qPCR analysis showed that the JAK2-STAT3 signaling pathway was activated in the mutants, and the inhibition of JAK2 partially rescued the anemic phenotype. This study suggests that nop56 is a potential target for investigation in erythropoietic disorders, particularly those that may be associated with JAK-STAT activation.

Funder

Guangdong Basic and Applied Basic Research Foundation

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3