microRNA-mRNA Analysis Reveals Tissue-Specific Regulation of microRNA in Mangrove Clam (Geloina erosa)

Author:

Liu Yunqing1ORCID,Dong Ziheng1ORCID,Chen Kun2ORCID,Yang Mingliu2,Shi Nianfeng1ORCID,Liao Xin2ORCID

Affiliation:

1. School of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China

2. Guangxi Key Laboratory of Mangrove Conservation and Utilization, Guangxi Academy of Marine Science (Guangxi Mangrove Research Center), Guangxi Academy of Science, Beihai 536007, China

Abstract

Geloina erosa is an important benthic animal in the mangrove, serving as an indicator organism for coastal environmental pollution. This study aimed to investigate the tissue-specific expression of miRNAs and their regulatory roles in predicted targets in G. erosa. Through miRNA sequencing and co-expression network analysis, we extensively studied the miRNA expression in three tissues: gills, hepatopancreas, and muscle. The results revealed a total of 1412 miRNAs, comprising 1047 known miRNAs, and 365 newly predicted miRNAs. These miRNAs exhibited distinct tissue-specific expression patterns. In the miRNA target gene prediction, a total of 7404 potential predicted targets were identified, representing approximately 33% of all unique transcripts associated with miRNAs. Further co-expression network analysis revealed nine modules, each showing a positive correlation with specific tissues (gills, hepatopancreas, or muscle). The blue module showed a significant correlation with gills (r = 0.83, p-value = 0.006), the black module was significantly related to the hepatopancreas (r = 0.78, p-value = 0.01), and the purple module was significantly correlated with muscle (r = 0.83, p-value = 0.006). Within these modules, related miRNAs tended to cluster together, while their correlations with other modules were relatively weak. Functional enrichment analysis was performed on miRNAs and their predicted targets in each tissue. In the gills, miRNAs primarily regulate immune-related genes, substance transport, and cytoskeletal organization. In the hepatopancreas, miRNAs suppressed genes involved in shell formation and played a role in cellular motor activity and metabolism. In muscle, miRNAs participate in metabolism and photoreceptive processes, as well as immune regulation. In summary, this study provides valuable insights into the tissue-specific regulation of miRNAs in G. erosa, highlighting their potential roles in immune response, metabolism, and environmental adaptation. These findings offer important clues for understanding the molecular mechanisms and biological processes in G. erosa, laying the foundation for further validation and elucidation of these regulatory relationships.

Funder

National Natural Science Foundation of China

Research Fund of Program of Guangxi Key Lab of Mangrove Conservation and Utilization

Department of Science and Technology of Henan Province

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3