Integrated Analysis of the Intestinal Microbiota and Transcriptome of Fenneropenaeus chinensis Response to Low-Salinity Stress

Author:

Tian Caijuan12,Wang Qiong23,Wang Jiajia23ORCID,Li Jitao23ORCID,Guan Chenhui24,He Yuying23,Gao Huan1

Affiliation:

1. Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China

2. National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China

3. Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China

4. School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China

Abstract

Salinity is an important environmental stress factor in mariculture. Shrimp intestines harbor dense and diverse microbial communities that maintain host health and anti-pathogen capabilities under salinity stress. In this study, 16s amplicon and transcriptome sequencing were used to analyze the intestine of Fenneropenaeus chinensis under low-salinity stress (15 ppt). This study aimed to investigate the response mechanisms of the intestinal microbiota and gene expression to acute low-salinity stress. The intestinal tissues of F. chinensis were analyzed using 16S microbiota and transcriptome sequencing. The microbiota analysis demonstrated that the relative abundances of Photobacterium and Vibrio decreased significantly, whereas Shewanella, Pseudomonas, Lactobacillus, Ralstonia, Colwellia, Cohaesibacter, Fusibacter, and Lachnospiraceae_NK4A136_group became the predominant communities. Transcriptome sequencing identified numerous differentially expressed genes (DEGs). The DEGs were clustered into many Gene Ontology terms and further enriched in some immunity- or metabolism-related Kyoto Encyclopedia of Genes and Genomes pathways, including various types of N-glycan biosynthesis, amino acid sugar and nucleotide sugar metabolism, and lysosome and fatty acid metabolism. Correlation analysis between microbiota and DEGs showed that changes in Pseudomonas, Ralstonia, Colwellia, and Cohaesibacter were positively correlated with immune-related genes such as peritrophin-1-like and mucin-2-like, and negatively correlated with caspase-1-like genes. Low-salinity stress caused changes in intestinal microorganisms and their gene expression, with a close correlation between them.

Funder

National Key R & D Program of China

the earmarked fund for CARS-48 and Central Public-interest Scientific Institution Basal Research Fund, CAFS

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3