Recent Developments in Biological Processing Technology for Palm Oil Mill Effluent Treatment—A Review

Author:

Dominic Debbie,Baidurah SitiORCID

Abstract

POME is the most voluminous waste generated from palm oil milling activities. The discharge of POME into the environment without any treatment processing could inflict an undesirable hazard to humans and the environment due to its high amount of toxins, organic, and inorganic materials. The treatment of POME prior to discharge into the environment is utmost required to protect the liability for human health and the environment. Biological treatments are preferable due to eco-friendly attributes that are technically and economically feasible. The goal of this review article is to highlight the current state of development in the biological processing technologies for POME treatment. These biological processing technologies are conducted in the presence of fungi, bacteria, microalgae, and a consortium of microorganisms. Numerous microbes are listed to identify the most efficient strain by monitoring the BOD, COD, working volume of the reactor, and treatment time. The most effective processing technology for POME treatment uses an upflow anaerobic sludge blanket reactor with the COD value of 99%, hydraulic retention time of 7.2 days, and a working volume of 4.7 litres. Biological processing technologies are mooted as an efficient and sustainable management practice of POME waste.

Funder

Ministry of Higher Education

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Reference161 articles.

1. OIL WORLD ISTA Mielke GmbH: Independent Global Market Analyses & Forecasts Since 1958. (2021, July 16). Retrievedhttps://www.oilworld.biz/p/monthly-july-16-2021

2. OIL PALM ECONOMIC PERFORMANCE IN MALAYSIA AND R&D PROGRESS IN 2019

3. Palm oil mill effluent (POME) from Malaysia palm oil mills: Waste or resource;Madaki;Int. J. Sci. Environ. Technol.,2013

4. The oil palm wastes in Malaysia;Abdullah,2013

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3