Improving Degradation of Polycyclic Aromatic Hydrocarbons by Bacillus atrophaeus Laccase Fused with Vitreoscilla Hemoglobin and a Novel Strong Promoter Replacement

Author:

Wang Luyao,Tan Yuzhi,Sun ShengweiORCID,Zhou Liangjie,Wu Guojun,Shao Yuting,Wang Mengxi,Xin ZhihongORCID

Abstract

Laccases catalyze a variety of electron-rich substrates by reducing O2 to H2O, with O2 playing a vital role as the final electron acceptor in the reaction process. In the present study, a laccase gene, lach5, was identified from Bacillus atrophaeus through sequence-based screening. LacH5 was engineered for modification by fusion expression and promoter replacement. Results showed that the purified enzyme LacH5 exhibited strong oxidative activity towards 2,2’-azinobis(3-ehtylbenzothiazolin-6-sulfnic acid) ammonium salt (ABTS) under optimum pH and temperature conditions (pH 5.0, 60 °C) and displayed remarkable thermostability. The activity of the two fusion enzymes was enhanced significantly from 14.2 U/mg (LacH5) to 22.5 U/mg (LacH5-vgb) and 18.6 U/mg (Vgb-lacH5) toward ABTS after LacH5 fusing with Vitreoscilla hemoglobin (VHb). Three of six tested polycyclic aromatic hydrocarbons (PAHs) were significantly oxidized by two fusion laccases as compared with LacH5. More importantly, the expression level of LacH5 and fusion protein LacH5-vgb was augmented by 3.7-fold and 7.0-fold, respectively, by using a novel strong promoter replacement. The results from the current investigation provide new insights and strategies for improving the activity and expression level of bacterial laccases, and these strategies can be extended to other laccases and multicopper oxidases.

Funder

the Key Research and Development Program of Jiangsu Province

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3