Detecting Blood Methylation Signatures in Response to Childhood Cancer Radiotherapy via Machine Learning Methods

Author:

Li Zhandong,Guo Wei,Ding Shijian,Feng Kaiyan,Lu Lin,Huang TaoORCID,Cai YudongORCID

Abstract

Radiotherapy is a helpful treatment for cancer, but it can also potentially cause changes in many molecules, resulting in adverse effects. Among these changes, the occurrence of abnormal DNA methylation patterns has alarmed scientists. To explore the influence of region-specific radiotherapy on blood DNA methylation, we designed a computational workflow by using machine learning methods that can identify crucial methylation alterations related to treatment exposure. Irrelevant methylation features from the DNA methylation profiles of 2052 childhood cancer survivors were excluded via the Boruta method, and the remaining features were ranked using the minimum redundancy maximum relevance method to generate feature lists. These feature lists were then fed into the incremental feature selection method, which uses a combination of deep forest, k-nearest neighbor, random forest, and decision tree to find the most important methylation signatures and build the best classifiers and classification rules. Several methylation signatures and rules have been discovered and confirmed, allowing for a better understanding of methylation patterns in response to different treatment exposures.

Funder

Strategic Priority Research Program of Chinese Academy of Sciences

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Reference65 articles.

1. The Future of Radiobiology

2. The Evolution of Radiation Therapy in Treating Cancer, Seminars in Oncology Nursing;Abshire,2018

3. Chronic Health Conditions in Adult Survivors of Childhood Cancer

4. Alteration of DNA Methylation in Gastric Cancer with Chemotherapy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3