Paternal Mitochondrial DNA Leakage in Natural Populations of Large-Scale Loach, Paramisgurnus dabryanus

Author:

Qi Zixin12,Shi Jiaoxu23,Yu Yue2,Yin Guangmei2,Zhou Xiaoyun2ORCID,Yu Yongyao24ORCID

Affiliation:

1. College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China

2. College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China

3. Agronomy and Life Science Department, Zhaotong University, Zhaotong 657000, China

4. Hubei Hongshan Laboratory, Wuhan 430070, China

Abstract

Animal mitochondrial DNA is usually considered to comply with strict maternal inheritance, and only one mitochondrial DNA haplotype exists in an individual. However, mitochondrial heteroplasmy, the occurrence of more than one mitochondrial haplotype, has recently been reported in some animals, such as mice, mussels, and birds. This study conducted extensive field surveys to obtain representative samples to investigate the existence of paternal inheritance of mitochondrial DNA (mtDNA) in natural fish populations. Evidence of paternal mitochondrial DNA leakage of P. dabryanus was discovered using high-throughput sequencing and bioinformatics methods. Two distinct mitochondrial haplotypes (16,569 bp for haplotype I and 16,646 bp for haplotype II) were observed, differing by 18.83% in nucleotide sequence. Phylogenetic analysis suggests divergence between these haplotypes and potential interspecific hybridization with M. anguillicaudatus, leading to paternal leakage. In natural populations of P. dabryanus along the Yangtze River, both haplotypes are present, with Type I being dominant (75% copy number). Expression analysis shows that Type I has higher expression levels of ND3 and ND6 genes compared to Type II, suggesting Type I’s primary role. This discovery of a species with two mitochondrial types provides a model for studying paternal leakage heterogeneity and insights into mitochondrial genome evolution and inheritance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3