Recognition of Rare Microfossils Using Transfer Learning and Deep Residual Networks

Author:

Wang BinORCID,Sun Ruyue,Yang Xiaoguang,Niu Ben,Zhang Tao,Zhao Yuandi,Zhang Yuanhui,Zhang Yiheng,Han JianORCID

Abstract

Various microfossils from the early Cambrian provide crucial clues for understanding the Cambrian explosion and the origin of animal phyla. However, specimens with important anatomical structures are extremely rare and the efficiency of retrieving such fossils by traditional manual selection under a microscope is quite low. Such a contradiction has hindered breakthroughs in micropaleontology for a long time. Here, we propose a solution for identifying specific taxa of Cambrian microfossils using only a few available specimens by transferring a model pre-trained on natural image datasets to the field of paleontological artificial intelligence. The method employs a 34-layer deep residual neural network as the underlying framework, migrates the ImageNet pre-trained model, freezes the low-layer network parameters and retrains the high-layer parameters to build a microfossil image recognition model. We built training sets with randomly selected images of varied number for each taxon. Our experiments show that the average recognition accuracy for specific taxa of Cambrian microfossils (50 images for each taxon) is higher than 0.97 and it can reach 0.85 with only three training samples per taxon. Comparative analyses indicate that our results are much better than those of various prevalent methods, such as the transpose convolutional neural network (TCNN). This demonstrates the feasibility of using natural images (ImageNet) for the training of microfossil recognition models and provides a promising tool for the discovery of rare fossils.

Funder

National Natural Science Foundation of China

State Key Laboratory of Paleobiology and Stratigraphy

Strategic Priority Research Program of the Chinese Academy of Sciences

111 Project of the Ministry of Education of China

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3