Abstract
Various microfossils from the early Cambrian provide crucial clues for understanding the Cambrian explosion and the origin of animal phyla. However, specimens with important anatomical structures are extremely rare and the efficiency of retrieving such fossils by traditional manual selection under a microscope is quite low. Such a contradiction has hindered breakthroughs in micropaleontology for a long time. Here, we propose a solution for identifying specific taxa of Cambrian microfossils using only a few available specimens by transferring a model pre-trained on natural image datasets to the field of paleontological artificial intelligence. The method employs a 34-layer deep residual neural network as the underlying framework, migrates the ImageNet pre-trained model, freezes the low-layer network parameters and retrains the high-layer parameters to build a microfossil image recognition model. We built training sets with randomly selected images of varied number for each taxon. Our experiments show that the average recognition accuracy for specific taxa of Cambrian microfossils (50 images for each taxon) is higher than 0.97 and it can reach 0.85 with only three training samples per taxon. Comparative analyses indicate that our results are much better than those of various prevalent methods, such as the transpose convolutional neural network (TCNN). This demonstrates the feasibility of using natural images (ImageNet) for the training of microfossil recognition models and provides a promising tool for the discovery of rare fossils.
Funder
National Natural Science Foundation of China
State Key Laboratory of Paleobiology and Stratigraphy
Strategic Priority Research Program of the Chinese Academy of Sciences
111 Project of the Ministry of Education of China
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献