Author:
Liu Binghua,Wen Haishen,Yang Jun,Li Xiaohui,Li Guangling,Zhang Jingru,Wu Shuxian,Butts Ian AE,He Feng
Abstract
Japanese flounder (Paralichthys olivaceus) responsive mechanisms to hypoxia are still not fully understood. Therefore, we performed an acute hypoxic treatment (dissolved oxygen at 2.07 ± 0.08 mg/L) on Japanese flounder. It was confirmed that the hypoxic stress affected the physiological phenotype through changes in blood physiology (RBC, HGB, WBC), biochemistry (LDH, ALP, ALT, GLU, TC, TG, ALB), and hormone (cortisol) indicators. Hypoxia inducible factor-1 (HIF-1), an essential oxygen homeostasis mediator in organisms consisting of an inducible HIF-1α and a constitutive HIF-1β, and its target gene LDH-A were deeply studied. Results showed that HIF-1α and LDH-A genes were co-expressed and significantly affected by hypoxic stress. The dual-luciferase reporter assay confirmed that transcription factor HIF-1 transcriptionally regulated the LDH-A gene, and its transcription binding sequence was GGACGTGA located at −2343~−2336. The DNA methylation status of HIF-1α and LDH-A genes were detected to understand the mechanism of environmental stress on genes. It was found that hypoxia affected the HIF-1α gene and LDH-A gene methylation levels. The study uncovered HIF-1/LDH-A signaling pathway responsive mechanisms of Japanese flounder to hypoxia in epigenetic modification and transcriptional regulation. Our study is significant to further the understanding of environmental responsive mechanisms as well as providing a reference for aquaculture.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province, China
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献