Analysis of Metabolic Profiles and Antioxidant Activity of Chinese Cordyceps, Ophiocordyceps sinensis, and Paecilomyces hepiali Based on Untargeted Metabolomics

Author:

He Min1ORCID,Tang Chu-Yu1,Wang Tao1ORCID,Xiao Meng-Jun1,Li Yu-Ling1,Li Xiu-Zhang1

Affiliation:

1. State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China

Abstract

Chinese cordyceps (GL) is a traditional medicinal fungus, with Ophiocordyceps sinensis (O. sinensis, BL) and Paecilomyces hepiali (P. hepiali, JSB) being fungi isolated from wild Chinese cordyceps. These three species share similar chemical composition and pharmacological effects. Existing studies have primarily compared the metabolites of Chinese cordyceps and O. sinensis, overlooking the assessment of antioxidant capacity in Chinese cordyceps, P. hepiali, and O. sinensis. In this study, LC-MS/MS was employed to analyze metabolites in GL, JSB, and BL. Utilizing principal component analysis (PCA), supervised orthogonal partial least squares discriminant analysis (OPLS-DA), and hierarchical cluster analysis (HCA), it was observed that the majority of differential metabolites (DMs) primarily accumulated in organic acids and derivatives, lipids and lipid-like molecules, and organoheterocyclic compounds. Antioxidant activity analysis indicated that GL exhibited the higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability (DPPH•, scavenging rate is 81.87 ± 0.97%), hydroxyl free radical scavenging capacity (•OH, scavenging rate is 98.10 ± 0.60%), and superoxide anion radical scavenging capacity (O2•−, scavenging rate is 69.74 ± 4.36%), while JSB demonstrated the higher FRAP total antioxidant capacity of 8.26 μmol Trolox/g (p < 0.05). Correlation analysis revealed a positive correlation between DMs (fatty acyls and amino acids) and DPPH•, FRAP, •OH, and O2•− (p < 0.05). Additionally, glycerophospholipid DMs were found to be positively correlated with FRAP (p < 0.05). Through KEGG pathway analysis, it was determined that the accumulation of DMs in pathways such as cutin, suberine and wax biosynthesis has a higher impact on influencing the antioxidant activity of the samples. These results shed light on the antioxidant capacity and metabolic characteristics of Chinese cordyceps and its substitutes and offer valuable insights into how different DMs impact the strength of antioxidant activity, aiding in the advancement and application of Chinese cordyceps and its substitutes.

Funder

Major Science and Technology Project of Qinghai Province

Chinese Academy of Sciences—People’s Government of Qinghai Province in Sanjiangyuan National Park

Protective Harvesting and Utilization Project for Ophiocordyceps sinensis in Qinghai Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3