Abstract
Comparative studies of human tissue damage caused by burns are challenging because precise information regarding the temperature, time, and duration of the exposure is often missing. Animal models cannot be fully translated to the human system due to interspecies differences in cutaneous tissues. We used a human composite tissue model to compare tissue damage caused by thermal burns with different dynamics. Equal subcutaneous/cutaneous composite tissue samples from six donors were first exposed to either preheated steel (100 °C) or a precision flame burner (300 °C) and were then maintained in vitro for seven days. Histological and immunohistochemical analyses revealed that flame burns instantly caused deep and stable damage to the subcutaneous tissue, which stayed constant for seven days. By contrast, contact burns inflicted tissue damage that was initially superficial but then expanded deeper into the adipose tissue. This spatiotemporal expansion of tissue damage was essentially accompanied by macrophage and fibroblast activation, which points towards inflammation resolution and wound healing. Our study suggests that thermal differences in burns directly influence the course of tissue damage, the cellular response and, consequently, the likely dynamics of repair processes days after burn injuries.
Funder
Stiftung zur Förderung der Erforschung von Ersatz- und Ergänzungsmethoden zur Einschränkung von Tierversuchen
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献