An Alignment-Independent Approach for the Study of Viral Sequence Diversity at Any Given Rank of Taxonomy Lineage

Author:

Chong Li ChuinORCID,Lim Wei LunORCID,Ban Kenneth Hon Kim,Khan Asif M.ORCID

Abstract

The study of viral diversity is imperative in understanding sequence change and its implications for intervention strategies. The widely used alignment-dependent approaches to study viral diversity are limited in their utility as sequence dissimilarity increases, particularly when expanded to the genus or higher ranks of viral species lineage. Herein, we present an alignment-independent algorithm, implemented as a tool, UNIQmin, to determine the effective viral sequence diversity at any rank of the viral taxonomy lineage. This is done by performing an exhaustive search to generate the minimal set of sequences for a given viral non-redundant sequence dataset. The minimal set is comprised of the smallest possible number of unique sequences required to capture the diversity inherent in the complete set of overlapping k-mers encoded by all the unique sequences in the given dataset. Such dataset compression is possible through the removal of unique sequences, whose entire repertoire of overlapping k-mers can be represented by other sequences, thus rendering them redundant to the collective pool of sequence diversity. A significant reduction, namely ~44%, ~45%, and ~53%, was observed for all reported unique sequences of species Dengue virus, genus Flavivirus, and family Flaviviridae, respectively, while still capturing the entire repertoire of nonamer (9-mer) viral peptidome diversity present in the initial input dataset. The algorithm is scalable for big data as it was applied to ~2.2 million non-redundant sequences of all reported viruses. UNIQmin is open source and publicly available on GitHub. The concept of a minimal set is generic and, thus, potentially applicable to other pathogenic microorganisms of non-viral origin, such as bacteria.

Funder

Malaysian Medical Association

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3