Effectiveness of a 12-Week Multi-Component Training Program with and without Transcranial Direct-Current Stimulation (tDCS) on Balance to Prevent Falls in Community-Dwelling Older Adults: A Study Protocol

Author:

Muñoz-Bermejo LauraORCID,Barrios-Fernandez SabinaORCID,Carlos-Vivas JorgeORCID,Mendoza-Muñoz MaríaORCID,Pastor-Cisneros RaquelORCID,Merellano-Navarro Eugenio,Gianikellis Konstantinos,Adsuar José CarmeloORCID

Abstract

Approximately one-third of elderly people aged over 65 who live in the community experience falls every year, with the proportion increasing with age. Moreover, of those who fall, about half will fall again in the following year. The falls’ consequences include disability, morbidity, and mortality. Although many external and internal factors lead to falls, balance issues play a major role. Multi-component training programs (McTP) usually combine balance, strength, cardiorespiratory fitness, and flexibility, with studies reporting multiple benefits on the health-related quality of life. Halo Sport is a transcranial direct-current stimulation (tDCS) device with promising results for gait performance. This study aims to test the effectiveness of the introduction of a tCDS device to an McTP to prevent falls in older adults. The sample will consist of 46 people aged 65 years or older, randomly assigned to experimental (n = 23) and control (n = 23) groups. The experimental group will perform the McTP while wearing tDCS, and the control group will perform McTP without the device, for three sessions per week over 12 weeks. The main measures will provide information about (1) safety, (2) applicability, (3) balance, (4) number of falls, (5) physical fitness, (6) risk of falling, (7) fear of falling, (8) health-related quality of life, and (9) cognitive function. Among the practical implications of this program, it is intended to provide data on its safety and effectiveness to be implemented in different resources as a tool for the prevention of falls.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3