Anti-Osteoporotic Effect of Lactobacillus brevis AR281 in an Ovariectomized Mouse Model Mediated by Inhibition of Osteoclast Differentiation

Author:

Yu Jing,Hang Yiling,Sun Wenni,Wang GuangqiangORCID,Xiong ZhiqiangORCID,Ai Lianzhong,Xia YongjunORCID

Abstract

Osteoporosis is a global disease characterized by weakened bone microarchitecture, leading to osteoporotic fractures. Estrogen replacement therapy is the traditional treatment for osteoporosis but carries with it an increased risk of cardiac events. In search of a safe and effective treatment, we used Lactobacillus brevis AR281, which has anti-inflammatory properties, to conduct a 7-week experiment, investigating its inhibitory effects on osteoporosis in an ovariectomized (ovx) mouse model. The results demonstrated that AR281 significantly improved bone microarchitecture and biomechanical strength in ovx mice by attenuating bone resorption. AR281 significantly decreased the critical osteoclast activator, the ratio of the receptor activator for nuclear factor kappa B (NF-κB) ligand (RANKL) to osteoprotegerin, and pro-inflammatory osteoclastogenic mediators, such as IL-1, IL-6, and IL-17, which can increase the RANKL expression. Moreover, AR281 modulated intestinal microbiota in ovx mice increased the abundance of Akkermansia, which is responsible for the improvement of gut epithelial barrier integrity. In an in vitro trial, AR281 suppressed the number of osteoclasts differentiated from the osteoclast precursor RAW264.7 cells caused by RANKL through the tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6)/NF-κB/nuclear factor of activated T cells c1 (NFATc1) pathway. Therefore, AR281 may be a natural alternative for combating osteoporosis.

Funder

Shanghai Engineering Research Center of food microbiology program

Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3