Contiguity and Structural Impacts of a Non-Myosin Protein within the Thick Filament Myosin Layers

Author:

Menard Lynda M.,Wood Neil B.,Vigoreaux Jim O.ORCID

Abstract

Myosin dimers arranged in layers and interspersed with non-myosin densities have been described by cryo-EM 3D reconstruction of the thick filament in Lethocerus at 5.5 Å resolution. One of the non-myosin densities, denoted the ‘red density’, is hypothesized to be flightin, an LMM-binding protein essential to the structure and function of Drosophila indirect flight muscle (IFM). Here, we build upon the 3D reconstruction results specific to the red density and its engagement with the myosin coiled-coil rods that form the backbone of the thick filament. Each independent red density winds its way through the myosin dimers, such that it links four dimers in a layer and one dimer in a neighboring layer. This area in which three distinct interfaces within the myosin rod are contacted at once and the red density extends to the thick filament core is designated the “multiface”. Present within the multiface is a contact area inclusive of E1563 and R1568. Mutations in the corresponding Drosophila residues (E1554K and R1559H) are known to interfere with flightin accumulation and phosphorylation in Drosophila. We further examine the LMM area in direct apposition to the red density and identified potential binding residues spanning up to ten helical turns. We find that the red density is associated within an expanse of the myosin coiled-coil that is unwound by the third skip residue and the coiled-coil is re-oriented while in contact with the red density. These findings suggest a mechanism by which flightin induces ordered assembly of myosin dimers through its contacts with multiple myosin dimers and brings about reinforcement on the level of a single myosin dimer by stabilization of the myosin coiled-coil.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3