Impact of Polyethylene Terephthalate Microplastics on Drosophila melanogaster Biological Profiles and Heat Shock Protein Levels

Author:

Kauts Simran1,Mishra Yachana1ORCID,Singh Mahendra P.23ORCID

Affiliation:

1. Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 14411, India

2. Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, India

3. Centre of Genomics and Bioinformatics (CGB), Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, India

Abstract

Microplastics and nanoplastics are abundant in the environment. Further research is necessary to examine the consequences of microplastic contamination on living species, given its widespread presence. In our research, we determined the toxic effects of PET microplastics on Drosophila melanogaster at the cellular and genetic levels. Our study revealed severe cytotoxicity in the midgut of larvae and the induction of oxidative stress after 24 and 48 h of treatment, as indicated by the total protein, Cu-Zn SOD, CAT, and MDA contents. For the first time, cell damage in the reproductive parts of the ovaries of female flies, as well as in the accessory glands and testes of male flies, has been observed. Furthermore, a decline in reproductive health was noted, resulting in decreased fertility among the flies. By analyzing stress-related genes such as hsp83, hsp70, hsp60, and hsp26, we detected elevated expression of hsp83 and hsp70. Our study identified hsp83 as a specific biomarker for detecting early redox changes in cells caused by PET microplastics in all the treated groups, helping to elucidate the primary defense mechanism against PET microplastic toxicity. This study offers foundational insights into the emerging environmental threats posed by microplastics, revealing discernible alterations at the genetic level.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3