Ensemble Deep-Learning-Enabled Clinical Decision Support System for Breast Cancer Diagnosis and Classification on Ultrasound Images

Author:

Ragab MahmoudORCID,Albukhari AshwagORCID,Alyami JaberORCID,Mansour Romany F.ORCID

Abstract

Clinical Decision Support Systems (CDSS) provide an efficient way to diagnose the presence of diseases such as breast cancer using ultrasound images (USIs). Globally, breast cancer is one of the major causes of increased mortality rates among women. Computer-Aided Diagnosis (CAD) models are widely employed in the detection and classification of tumors in USIs. The CAD systems are designed in such a way that they provide recommendations to help radiologists in diagnosing breast tumors and, furthermore, in disease prognosis. The accuracy of the classification process is decided by the quality of images and the radiologist’s experience. The design of Deep Learning (DL) models is found to be effective in the classification of breast cancer. In the current study, an Ensemble Deep-Learning-Enabled Clinical Decision Support System for Breast Cancer Diagnosis and Classification (EDLCDS-BCDC) technique was developed using USIs. The proposed EDLCDS-BCDC technique was intended to identify the existence of breast cancer using USIs. In this technique, USIs initially undergo pre-processing through two stages, namely wiener filtering and contrast enhancement. Furthermore, Chaotic Krill Herd Algorithm (CKHA) is applied with Kapur’s entropy (KE) for the image segmentation process. In addition, an ensemble of three deep learning models, VGG-16, VGG-19, and SqueezeNet, is used for feature extraction. Finally, Cat Swarm Optimization (CSO) with the Multilayer Perceptron (MLP) model is utilized to classify the images based on whether breast cancer exists or not. A wide range of simulations were carried out on benchmark databases and the extensive results highlight the better outcomes of the proposed EDLCDS-BCDC technique over recent methods.

Funder

King Abdulaziz University

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3