Effect of Nitrogen Application Rate on the Relationships between Multidimensional Plant Diversity and Ecosystem Production in a Temperate Steppe

Author:

Debaba Gossaye Hailu1ORCID,Li Kunyu1,Wang Xiaowei1,Wang Yanan1,Bai Wenming2,Li Guoyong1ORCID

Affiliation:

1. International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng 475004, China

2. State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

Abstract

Nitrogen (N) deposition, as one of the global change drivers, can alter terrestrial plant diversity and ecosystem function. However, the response of the plant diversity–ecosystem function relationship to N deposition remains unclear. On one hand, in the previous studies, taxonomic diversity (i.e., species richness, SR) was solely considered the common metric of plant diversity, compared to other diversity metrics such as phylogenetic and functional diversity. On the other hand, most previous studies simulating N deposition only included two levels of control versus N enrichment. How various N deposition rates affect multidimensional plant diversity–ecosystem function relationships is poorly understood. Here, a field manipulative experiment with a N addition gradient (0, 1, 2, 4, 8, 16, 32, and 64 g N m−2 yr−1) was carried out to examine the effects of N addition rates on the relationships between plant diversity metrics (taxonomic, phylogenetic, and functional diversity) and ecosystem production in a temperate steppe. Production initially increased and reached the maximum value at the N addition rate of 47 g m−2 yr−1, then decreased along the N-addition gradient in the steppe. SR, functional diversity calculated using plant height (FDis-Height) and leaf chlorophyll content (FDis-Chlorophyll), and phylogenetic diversity (net relatedness index, NRI) were reduced, whereas community-weighted means of plant height (CWMHeight) and leaf chlorophyll content (CWMChlorophyll) were enhanced by N addition. N addition did not affect the relationships of SR, NRI, and FDis-Height with production but significantly affected the strength of the correlation between FDis-Chlorophyll, CWMHeight, and CWMChlorophyll with biomass production across the eight levels of N addition. The findings indicate the robust relationships of taxonomic and phylogenetic diversity and production and the varying correlations between functional diversity and production under increased N deposition in the temperate steppe, highlighting the importance of a trait-based approach in studying the plant diversity–ecosystem function under global change scenarios.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference60 articles.

1. Integrative modelling reveals mechanisms linking productivity and plant species richness;Grace;Nature,2016

2. Biodiversity and ecosystem functioning;Tilman;Annu. Rev. Ecol. Evol. Syst.,2014

3. Biodiversity simultaneously enhances the production and stability of community biomass, but the effects are independent;Cardinale;Ecol. Ecol. Soc. Am.,2013

4. Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought;Craven;Philos. T. R. Soc. B,2016

5. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity;Isbell;Proc. Natl. Acad. Sci. USA,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3