Modelling 5-km Running Performance on Level and Hilly Terrains in Recreational Runners

Author:

Melo Onécimo Ubiratã Medina,Tartaruga Marcus Peikriszwili,de Borba Edilson FernandoORCID,Boullosa DanielORCID,da Silva Edson SoaresORCID,Bernardo Rodrigo Torma,Coimbra Renan,Oliveira Henrique Bianchi,da Rosa Rodrigo GomesORCID,Peyré-Tartaruga Leonardo AlexandreORCID

Abstract

Incline and level running on treadmills have been extensively studied due to their different cardiorespiratory and biomechanical acute responses. However, there are no studies examining the performance determinants of outdoor running on hilly terrains. We aimed to investigate the influence of anthropometrics, muscle strength, and cardiorespiratory and gait spatiotemporal parameters during level (0%) and inclined (+7%) running on performance in level and hilly 5-km races. Twenty male recreational runners completed two 5-km outdoor running tests (0% vs. +7% and −7%), and two submaximal (10 km·h−1) and incremental treadmill tests at 0 and 7% slopes, after complete laboratory evaluations. The velocity at maximal oxygen consumption (VO2max) evaluated at 7% incline and level treadmill running were the best performance predictors under both hilly (R2 = 0.72; p < 0.05) and level (R2 = 0.85; p < 0.01) conditions, respectively. Inclusion of ventilatory and submaximal heart rate data improved the predictive models up to 100%. Conversely, none of the parameters evaluated in one condition contributed to the other condition. The spatiotemporal parameters and the runners’ strength levels were not associated to outdoor performances. These results indicate that the vVO2max evaluated at similar slopes in the lab can be used to predict 5-km running performances on both level and hilly terrains.

Funder

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

National Council for Scientific and Technological Development

LAPEX/UFRGS

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3