The Paediatric Glaucoma Diagnostic Ability of Optical Coherence Tomography: A Comparison of Macular Segmentation and Peripapillary Retinal Nerve Fibre Layer Thickness

Author:

Lever MaelORCID,Halfwassen Christian,Unterlauft Jan Darius,Bechrakis Nikolaos E.,Manthey Anke,Böhm Michael R. R.

Abstract

Paediatric glaucoma leads to a decreased thickness of the peripapillary retinal nerve fibre layer (pRNFL) and of the macula. These changes can be precisely quantified using spectral domain-optical coherence tomography (SD-OCT). Despite abundant reports in adults, studies on the diagnostic capacity of macular SD-OCT in paediatric glaucoma are rare. The aim of this study was to compare the glaucoma discriminative ability of pRNFL and macular segment thickness in paediatric glaucoma patients and healthy children. Data of 72 children aged 5–17 years (glaucoma: 19 (26.4%), healthy: 53 (73.6%)) examined with SD-OCT (SPECTRALIS®, Heidelberg Engineering) were analysed retrospectively. The thickness of pRNFL sectors and of macular segment subfields were compared between diseased and healthy participants. Areas under the receiver-operating characteristic curves (AUC), sensitivity, and specificity from logistic regression were used to evaluate the glaucoma discriminative capacity of single and combined pRNFL and macular segments’ thickness. The results revealed a reduced thickness of the pRNFL and of the three inner macular layers in glaucoma patients, which correlates highly with the presence of glaucoma. The highest glaucoma discriminative ability was observed for the combination of pRNFL sectors or inner macular segments (AUC: 0.83 and 0.85, respectively), although sensitivity remained moderate (both 63% at 95% specificity). In conclusion, while confirmation from investigations in larger cohorts is required, SD-OCT-derived pRNFL and macular thickness measurements seem highly valuable for the diagnosis of paediatric glaucoma.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3