Bacterial Biofilm in Chronic Wounds and Possible Therapeutic Approaches

Author:

Cavallo Ilaria1,Sivori Francesca1,Mastrofrancesco Arianna1ORCID,Abril Elva1,Pontone Martina1,Di Domenico Enea Gino2ORCID,Pimpinelli Fulvia1ORCID

Affiliation:

1. Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, 00144 Rome, Italy

2. Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy

Abstract

Wound repair and skin regeneration is a very complex orchestrated process that is generally composed of four phases: hemostasis, inflammation, proliferation, and remodeling. Each phase involves the activation of different cells and the production of various cytokines, chemokines, and other inflammatory mediators affecting the immune response. The microbial skin composition plays an important role in wound healing. Indeed, skin commensals are essential in the maintenance of the epidermal barrier function, regulation of the host immune response, and protection from invading pathogenic microorganisms. Chronic wounds are common and are considered a major public health problem due to their difficult-to-treat features and their frequent association with challenging chronic infections. These infections can be very tough to manage due to the ability of some bacteria to produce multicellular structures encapsulated into a matrix called biofilms. The bacterial species contained in the biofilm are often different, as is their capability to influence the healing of chronic wounds. Biofilms are, in fact, often tolerant and resistant to antibiotics and antiseptics, leading to the failure of treatment. For these reasons, biofilms impede appropriate treatment and, consequently, prolong the wound healing period. Hence, there is an urgent necessity to deepen the knowledge of the pathophysiology of delayed wound healing and to develop more effective therapeutic approaches able to restore tissue damage. This work covers the wound-healing process and the pathogenesis of chronic wounds infected by biofilm-forming pathogens. An overview of the strategies to counteract biofilm formation or to destroy existing biofilms is also provided.

Funder

Italian Ministry of Health

Publisher

MDPI AG

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3