The Post-Antibiotic Era: A New Dawn for Bacteriophages

Author:

Jin Youshun1,Li Wei2,Zhang Huaiyu3,Ba Xuli1,Li Zhaocai4,Zhou Jizhang14

Affiliation:

1. State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China

2. College of Agriculture, Ningxia University, Yinchuan 750021, China

3. Animal Pathology Laboratory, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China

4. State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China

Abstract

Phages are the most biologically diverse entities in the biosphere, infecting specific bacteria. Lytic phages quickly kill bacteria, while lysogenic phages integrate their genomes into bacteria and reproduce within the bacteria, participating in the evolution of natural populations. Thus, lytic phages are used to treat bacterial infections. However, due to the huge virus invasion, bacteria have also evolved a special immune mechanism (CRISPR-Cas systems, discovered in 1987). Therefore, it is necessary to develop phage cocktails and synthetic biology methods to infect bacteria, especially against multidrug-resistant bacteria infections, which are a major global threat. This review outlines the discovery and classification of phages and the associated achievements in the past century. The main applications of phages, including synthetic biology and PT, are also discussed, in addition to the effects of PT on immunity, intestinal microbes, and potential safety concerns. In the future, combining bioinformatics, synthetic biology, and classic phage research will be the way to deepen our understanding of phages. Overall, whether phages are an important element of the ecosystem or a carrier that mediates synthetic biology, they will greatly promote the progress of human society.

Funder

National Key R&D Program

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3