Affiliation:
1. College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
Abstract
Bacillus velezensis HN-Q-8, isolated in our previous study, has an antagonistic effect on Alternaria solani. After being pretreated with a fermentation liquid with HN-Q-8 bacterial cell suspensions, the potato leaves inoculated with A. solani displayed smaller lesion areas and less yellowing than the controls. Interestingly, the activity levels of superoxide dismutase, peroxidase, and catalase in potato seedlings were enhanced by the addition of the fermentation liquid with bacterial cells. Additionally, the overexpression of key genes related to induced resistance in the Jasmonate/Ethylene pathway was activated by the addition of the fermentation liquid, suggesting that the HN-Q-8 strain induced resistance to potato early blight. In addition, our laboratory and field experiments showed that the HN-Q-8 strain can promote potato seedling growth and significantly increase tuber yield. The root activity and chlorophyll content of potato seedlings were significantly increased along with the levels of indole acetic acid, gibberellic acid 3, and abscisic acid upon addition of the HN-Q-8 strain. The fermentation liquid with bacterial cells was more efficient in inducing disease resistance and promoting growth than bacterial cell suspensions alone or the fermentation liquid without bacterial cells. Thus, the B. velezensis HN-Q-8 strain is an effective bacterial biocontrol agent, augmenting the options available for potato cultivation.
Funder
Modern Agro-industry Technology Research System in Hebei Province, China
the China Agriculture Research System of MOF and MARA
the Natural Science Foundation of Hebei Province
the National Natural Science Foundation of China
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献