Transcriptomic Networks Reveal the Tissue-Specific Cold Shock Responses in Japanese Flounder (Paralichthys olivaceus)

Author:

He Jiayi1,Zhu Qing12,Han Ping1,Zhou Tianyu2,Li Juyan12,Wang Xubo3,Cheng Jie124ORCID

Affiliation:

1. Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China

2. Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China

3. Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, 169 Qixingnan Road, Ningbo 315832, China

4. Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China

Abstract

Low temperature is among the important factors affecting the distribution, survival, growth, and physiology of aquatic animals. In this study, coordinated transcriptomic responses to 10 °C acute cold stress were investigated in the gills, hearts, livers, and spleens of Japanese flounder (Paralichthys olivaceus), an important aquaculture species in east Asia. Histological examination suggested different levels of injury among P. olivaceus tissues after cold shock, mainly in the gills and livers. Based on transcriptome and weighted gene coexpression network analysis, 10 tissue-specific cold responsive modules (CRMs) were identified, revealing a cascade of cellular responses to cold stress. Specifically, five upregulated CRMs were enriched with induced differentially expressed genes (DEGs), mainly corresponding to the functions of “extracellular matrix”, “cytoskeleton”, and “oxidoreductase activity”, indicating the induced cellular response to cold shock. The “cell cycle/division” and “DNA complex” functions were enriched in the downregulated CRMs for all four tissues, which comprised inhibited DEGs, suggesting that even with tissue-specific responses, cold shock may induce severely disrupted cellular functions in all tissues, reducing aquaculture productivity. Therefore, our results revealed the tissue-specific regulation of the cellular response to low-temperature stress, which warrants further investigation and provides more comprehensive insights for the conservation and cultivation of P. olivaceus in cold water.

Funder

Natural Science Foundation of Shandong Province

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3