Aggregated Distribution as an Explanation for the Paradox of Plankton and Collective Animal Behavior

Author:

Falgueras-Cano JavierORCID,Falgueras-Cano Juan AntonioORCID,Moya AndrésORCID

Abstract

This work analyzes the evolutionary consequences of different aggregation levels of species distribution with an Evolutionary Cellular Automaton (ECA). We have found that in habitats with the same carrying capacity, aggregated distributions preserve smaller populations than do uniform distributions, i.e., they are less efficient. Nonetheless, we have also found that aggregated distributions, among other factors, can help the evolutionary stability of some biological interactions, such as predator–prey interactions, despite their granting less individual fitness. Besides, the competitive exclusion principle does not usually stand in populations with aggregated distribution. We have applied ECA to study the effects of aggregated distribution in two notorious cases: in the so-called paradox of the plankton and in gregarious animals. In doing so, we intend to ratify long-established ecological knowledge explaining these phenomena from a new perspective. In the first case, due to aggregate distribution, large aggregations of digital organisms mimicking very abundant planktonic species, leave large patches or oceanic areas free for other less competitive organisms, which mimic rare species, to prosper. In this case, we can see how effects, such as ecological drift and the small portion, act simultaneously. In the second case of aggregation, the aggregate distribution of gregarious animals could be explained under specialized predator–prey interactions and interdemic competition. Thus, digital organisms that imitate predators reduce the competitive capacity of their prey, destabilizing their competitiveness against other species. The specialized predator also goes extinct if the prey goes extinct by natural selection. Predators that have an aggregate distribution compensate the prey and thus avoid exclusion. This way there are more predator-free patches in which the prey can prosper. However, by granting greater colonization capacity to its prey, the predator loses competitiveness. Therefore, it is a multilevel selection event in which group adaptation grows to the detriment of the predator as an individual.

Funder

Generalitat Valenciana

Ministry of Science, Innovations and Universities, Spain

FEDER

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3