Bioinformatic Analysis Reveals the Role of Translation Elongation Efficiency Optimisation in the Evolution of Ralstonia Genus

Author:

Korenskaia Aleksandra Y.123ORCID,Matushkin Yury G.13ORCID,Mustafin Zakhar S.1,Lashin Sergey A.123ORCID,Klimenko Alexandra I.12ORCID

Affiliation:

1. Systems Biology Department, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, Novosibirsk 630090, Russia

2. Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, Novosibirsk 630090, Russia

3. Department of Natural Sciences, Novosibirsk National Research State University, Pirogova St. 1, Novosibirsk 630090, Russia

Abstract

Translation efficiency modulates gene expression in prokaryotes. The comparative analysis of translation elongation efficiency characteristics of Ralstonia genus bacteria genomes revealed that these characteristics diverge in accordance with the phylogeny of Ralstonia. The first branch of this genus is a group of bacteria commonly found in moist environments such as soil and water that includes the species R. mannitolilytica, R. insidiosa, and R. pickettii, which are also described as nosocomial infection pathogens. In contrast, the second branch is plant pathogenic bacteria consisting of R. solanacearum, R. pseudosolanacearum, and R. syzygii. We found that the soil Ralstonia have a significantly lower number and energy of potential secondary structures in mRNA and an increased role of codon usage bias in the optimization of highly expressed genes’ translation elongation efficiency, not only compared to phytopathogenic Ralstonia but also to Cupriavidus necator, which is closely related to the Ralstonia genus. The observed alterations in translation elongation efficiency of orthologous genes are also reflected in the difference of potentially highly expressed gene’ sets’ content among Ralstonia branches with different lifestyles. Analysis of translation elongation efficiency characteristics can be considered a promising approach for studying complex mechanisms that determine the evolution and adaptation of bacteria in various environments.

Funder

Kurchatov Genomic Centre of the Institute of Cytology and Genetics, SB RAS

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3