Crystallographic Texture of the Mineral Matter in the Bivalve Shells of Gryphaea dilatata Sowerby, 1816

Author:

Pakhnevich Alexey,Nikolayev Dmitry,Lychagina TatianaORCID

Abstract

It is assumed that the crystallographic texture of minerals in the shells of recent and fossil mollusks is very stable. To check this, it is necessary to examine the shells of animals that had lain in sediments for millions of years and lived in different conditions. It is revealed that the crystallographic texture of calcite in the shells of Gryphaea dilatata from deposits from the Middle Callovian–Lower Oxfordian (Jurassic), which lived in different water areas, is not affected by habitat conditions and the fossilization process. The crystallographic texture was studied using pole figures measured by neutron diffraction. The neutron diffraction method makes it possible to study the crystallographic texture in large samples—up to 100 cm3 in volume without destroying them. The recrystallization features of the G. dilatata valve, which affect the crystallographic texture, were discovered for the first time. This is determined from the isolines appearance of pole figures. The crystallographic texture of the G. dilatata mollusks’ different valves vary depending on their shape. The pole figures of calcite in the thick-walled valves of G. dilatata, Pycnodonte mirabilis, and Ostrea edulis are close to axial and display weak crystallographic texture.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Reference26 articles.

1. Bivalves of Russia and Neighboring Countries in the Phanerozoic;Nevesskaya,2013

2. ENVIRONMENTAL AND BIOLOGICAL CONTROLS ON BIVALVE SHELL MINERALOGY

3. Classification and Phylogenetic Significance of Molluscan Shell Microstructure

4. Hyotissocameleo, a new Cretaceous oyster subgenus and its shell microstructure, from Wadi Tarfa, Eastern Desert of Egypt;Zakhera;Paleontol. Res.,2001

5. Experimental neutron pole figures of minerals composing the bivalve mollusc shells

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3