Humic Lake Exhibits Higher Microbial Functional Gene Diversity and Weaker Gene Interaction Efficiency than a Common Alkaline Lake

Author:

He Dan12,Liu Yuanyuan3,Wu Qinglong245ORCID,Peng Yuyang3,Ren Lijuan23ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Center of Microbiology, Guangzhou 510075, China

2. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China

3. Department of Ecology, Institute of Hydrobiology, Jinan University, Guangzhou 510632, China

4. Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China

5. Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China

Abstract

Humic lakes (HLs) are special water bodies (high organic matter content, low pH, and low transparency) that are important sources of major greenhouse gases. The knowledge about microbial functional potentials and the interactions among different genes in HL water has been scarcely understood. In this study, we used 16S rRNA gene sequencing and the GeoChip 5.0 to investigate microbial community compositions and functional gene structures in an HL and a reference weakly alkaline lake (RAL). The HL microbial communities showed distinct compositions and functional gene structures than those in the RAL. The functional gene diversity was significantly higher in the HL than in the RAL. Specifically, higher gene relative intensities in carbon and nitrogen fixations, the degradation of various types of carbon, methane oxidation and methanogenesis, ammonification, denitrification, and assimilatory N reduction were observed in the HL samples. By contrast, the metabolic potentials of microorganisms involved in dissimilatory N reduction, phosphorus degradation, and sulfur oxidation were weaker in the HL than in the RAL. Despite higher functional gene diversity, the interaction efficiency among genes (reflected by network geodesic distance and clustering coefficient) might be reduced in the HL. Different functional microbes may develop less interdependent relationships in acquiring nutrients given the high resource availability in the HL. Overall, the enhanced microbial metabolic potentials and less efficient functional interactions might have great consequences on nutrient cycling and greenhouse gas emissions in the HL ecosystem.

Funder

National Natural Science Foundation of China

Innovation Group Project of Southern Marine Science, Engineering Guangdong Laboratory

GDAS’ Special Project of Science and Technology Development

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3