Nitrogen Addition Affects Interannual Variation in Seed Production in a Tibetan Perennial Herb

Author:

Lou Yuanxin1,Wang Ruolan1,Che Peiyue1,Zhao Chuan2,Chen Yali1,Yang Yangheshan3ORCID,Mu Junpeng1ORCID

Affiliation:

1. Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China

2. Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China

3. School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China

Abstract

The variability observed in the annual seed production of perennial plants can be seen as an indication of changes in the allocation of resources between growth and reproduction, which can be attributed to fluctuations in the environment. However, a significant knowledge gap exists concerning the impacts of nitrogen addition on the interannual seed production patterns of perennial plants. We hypothesized that the addition of nitrogen would impact the annual variations in the seed production of perennial plants, ultimately affecting their overall reproductive efficiency. A multiyear field experiment was conducted to investigate the effects of varying nitrogen supply levels (e.g., 0, 4, and 8 kg N ha−1 yr−1 of N0, N4, and N8) on vegetative and floral traits, pollinator visitation rates, and seed traits over a period of four consecutive years. The results showed that the N0 treatment exhibited the highest levels of seed production and reproductive efficiency within the initial two years. In contrast, the N4 treatment displayed its highest level of performance in these metrics in the second and third years, whereas the N8 treatment showcased its most favorable outcomes in the third and fourth years. Similar patterns were found in the number of flowers per capitulum and the number of capitula per plant. There exists a positive correlation between aboveground biomass and several factors, including the number of flowers per capitulum, the number of capitula per plant, the volume of nectar per capitulum, and the seed production per plant. A positive correlation was found between pollinator visitation and the number of flowers per capitulum or the number of capitula per plant. This implies that the addition of N affected the maintenance of plant aboveground biomass, flower trait stability, pollinator visitation, and, subsequently, the frequency of seed production and reproductive efficiency. Our results suggest that augmenting the nitrogen content in the soil may have the capacity to modify the inherent variability in seed production that is observed across various years and enhance the effectiveness of reproductive processes. These findings have the potential to enhance our comprehension of the impact of nitrogen addition on the reproductive performance of perennial herbaceous plants and the underlying mechanisms of biodiversity in the context of global environmental changes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

open project from the Ecological Security and Protection Key Laboratory of Sichuan Province

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3