The Dynamics of miR-449a/c Expression during Uterine Cycles Are Associated with Endometrial Development

Author:

Naydenov Mladen,Nikolova MariaORCID,Apostolov Apostol,Glogovitis Ilias,Salumets AndresORCID,Baev VesselinORCID,Yahubyan Galina

Abstract

The human endometrium is a highly dynamic tissue. Increasing evidence has shown that microRNAs (miRs) play essential roles in human endometrium development. Our previous assay, based on small RNA-sequencing (sRNA-seq) indicated the complexity and dynamics of numerous sequence variants of miRs (isomiRs) that can act together to control genes of functional relevance to the receptive endometrium (RE). Here, we used a greater average depth of sRNA-seq to detect poorly expressed small RNAs. The sequencing data confirmed the up-regulation of miR-449c and uncovered other members of the miR-449 family up-regulated in RE—among them miR-449a, as well as several isoforms of both miR-449a and miR-449c, while the third family member, miR-449b, was not identified. Stem-looped RT-qPCR analysis of miR expression at four-time points of the endometrial cycle verified the increased expression of the miR-449a/c family members in RE, among which the 5′ isoform of miR-449c–miR-449c.1 was the most strongly up-regulated. Moreover, we found in a case study that the expression of miR-449c.1 and its precursor correlated with the histological assessment of the endometrial phase and patient age. We believe this study will promote the clinical investigation and application of the miR-449 family in the diagnosis and prognosis of human reproductive diseases.

Funder

the National Science Fund of Bulgaria

the Estonian Research Council

Horizon 2020 innovation grant

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3