Application of BCXZM Composite for Arsenic Removal: EPS Production, Biotransformation and Immobilization of Bacillus XZM on Corn Cobs Biochar

Author:

Irshad Sana123,Xie Zuoming24,Qing Mao2,Nawaz Asad13,Mehmood Sajid5ORCID,Alomar Suliman Yousef6ORCID,Faheem Muhammad2ORCID,Walayat Noman7

Affiliation:

1. School of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518000, China

2. School of Environmental Studies, China University of Geosciences, Wuhan 430074, China

3. Institute for Advanced Studies, Shenzhen University, Shenzhen 518000, China

4. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China

5. Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China

6. Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

7. Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrán das Viñas, Rúa Galicia N 4, 32900 Ourense, Spain

Abstract

This study determined the effect of Bacillus XZM extracellular polymeric substances (EPS) production on the arsenic adsorption capacity of the Biochar-Bacillus XZM (BCXZM) composite. The Bacillus XZM was immobilized on corn cobs multifunction biochar to generate the BCXZM composite. The arsenic adsorption capacity of BCXZM composite was optimized at different pHs and As(V) concentrations using a central composite design (CCD)22 and maximum adsorption capacity (42.3 mg/g) was attained at pH 6.9 and 48.9 mg/L As(V) dose. The BCXZM composite showed a higher arsenic adsorption than biochar alone, which was further confirmed through scanning electron microscopy (SEM) micrographs, EXD graph and elemental overlay as well. The bacterial EPS production was sensitive to the pH, which caused a major shift in the –NH, –OH, –CH, –C=O, –C–N, –SH, –COO and aromatic/-NO2 peaks of FTIR spectra. Regarding the techno economic analysis, it was revealed that USD 6.24 are required to prepare the BCXZM composite to treat 1000 gallons of drinking water (with 50 µg/L of arsenic). Our findings provide insights (such as adsorbent dose, optimum operating temperature and reaction time, and pollution load) for the potential application of the BCXZM composite as bedding material in fixed-bed bioreactors for the bioremediation of arsenic-contaminated water in future.

Funder

King Saud University

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3