Author:
Cui Wen-Zhao,Qiu Jian-Feng,Dai Tai-Ming,Chen Zhuo,Li Jiang-Lan,Liu Kai,Wang Yu-Jun,Sima Yang-Hu,Xu Shi-Qing
Abstract
Diapause is a developmental transition in insects based on seasonal adaptation to adversity; it is regulated by a circadian clock system and the endocrine system. However, the molecular node and its mechanism underlying the effects of these systems are still unclear. Here, a mutant of Bombyx mori with the circadian clock gene Period (Per) knocked out was constructed, which dramatically changed the classic diapause-destined pathway. Per-knockout silkworms powerfully attenuated, but could not completely block, the predetermined effects of temperature and photoperiod on diapause determination, and this effect depended on the diapause hormone (DH) pathway. The impaired transcription-translation feedback loop of the circadian clock system lacking the Per gene caused direct up-regulation of the expression of GRD, a receptor of γ-aminobutyric acid (GABA), by changing expression level of Cycle. The synthesis of GABA in the tissue complex of brain-suboesophageal ganglion then increased and restricted the decomposition, which continuously promoted the GABAergic signal to play a role, and finally inhibiting (delaying) the release of DH to the hemolymph, and reducing the diapause-inducing effect of DH. The results provided an example to explain the regulatory mechanism of the circadian clock on endocrine hormones in the silkworm.
Funder
National Natural Science Foundation of China
Agriculture Research System of China
China Postdoctoral Science Foundation
Priority Academic Program Development of Jiangsu Higher Education Institutions
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献