Mechanism of Ca2+-Dependent Pro-Apoptotic Action of Selenium Nanoparticles, Mediated by Activation of Cx43 Hemichannels

Author:

Turovsky Egor A.ORCID,Varlamova Elena G.ORCID

Abstract

To date, there are practically no data on the mechanisms of the selenium nanoparticles action on calcium homeostasis, intracellular signaling in cancer cells, and on the relationship of signaling pathways activated by an increase in Ca2+ in the cytosol with the induction of apoptosis, which is of great importance. The study of these mechanisms is important for understanding the cytotoxic effect of selenium nanoparticles and the role of this microelement in the regulation of carcinogenesis. The work is devoted to the study of the role of selenium nanoparticles obtained by laser ablation in the activation of the calcium signaling system and the induction of apoptosis in human glioblastoma cells (A-172 cell line). In this work, it was shown for the first time that the generation of Ca2+ signals in A-172 cells occurs in response to the application of various concentrations of selenium nanoparticles. The intracellular mechanism responsible for the generation of these Ca2+ signals has also been established. It was found that nanoparticles promote the mobilization of Ca2+ ions from the endoplasmic reticulum through the IP3-receptor. This leads to the activation of vesicular release of ATP through connexin hemichannels (Cx43) and paracrine cell activation through purinergic receptors (mainly P2Y). In addition, it was shown that the activation of this signaling pathway is accompanied by an increase in the expression of pro-apoptotic genes and the induction of apoptosis. For the first time, the role of Cx43 in the regulation of apoptosis caused by selenium nanoparticles in glioblastoma cells has been shown. It was found that inhibition of Cx43 leads to a significant suppression of the induction of apoptosis in these cells after 24 h treatment of cells with selenium nanoparticles at a concentration of 5 µg/mL.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3