Abstract
Interleukin (IL)-10 is a homodimer cytokine that plays a crucial role in suppressing inflammatory responses and regulating the growth or differentiation of various immune cells. However, the molecular mechanism of IL-10 regulation is only partially understood because its regulation is environment or cell type-specific. In this study, we developed a computational approach, ILeukin10Pred (interleukin-10 prediction), by employing amino acid sequence-based features to predict and identify potential immunosuppressive IL-10-inducing peptides. The dataset comprises 394 experimentally validated IL-10-inducing and 848 non-inducing peptides. Furthermore, we split the dataset into a training set (80%) and a test set (20%). To train and validate the model, we applied a stratified five-fold cross-validation method. The final model was later evaluated using the holdout set. An extra tree classifier (ETC)-based model achieved an accuracy of 87.5% and Matthew’s correlation coefficient (MCC) of 0.755 on the hybrid feature types. It outperformed an existing state-of-the-art method based on dipeptide compositions that achieved an accuracy of 81.24% and an MCC value of 0.59. Our experimental results showed that the combination of various features achieved better predictive performance..
Funder
Ministry of Science and Technology, Taiwan
Ministry of Education, Taiwan
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献